Lect24-0415 Htpy

Friday, April 15, 2016

10:49 AM

Let X, Y be spaces. Two continuous waps $f,g:X \longrightarrow Y$ are homotopic if \exists continuous $H:X \times [0,1] \longrightarrow Y$, call homotopy such that H(x,0) = f(x) $\forall x \in X$ H(x,1) = g(x)

Notation. $f \simeq g$ or $f \simeq g$

Example

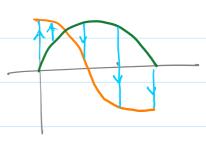
1) A rotation R_{α} on R^{2} $X = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \longmapsto R_{\alpha}(X) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$

Any two $R\alpha$, $R\beta$ are homotopic e.g $H(x,t) = R_{(1-t)\alpha+t\beta}(x)$

Clearly, homotopy may not be unique.

 $\begin{array}{ccc}
\text{(2)} & f,g: [0,\pi] & \longrightarrow \mathbb{R}^2 \\
f(x) &= \sin x \\
g(x) &= \cos x
\end{array}$

$$H(x,t) = -\sin\left(\frac{t\overline{n}}{2} - x\right)$$



Htpy Examples

Friday, April 15, 2016 10:49 AM

3)
$$X = S' = \{ z \in \mathbb{C} : |z| = 1 \}$$
, $Y = \mathbb{C} = \mathbb{R}^2$
 $f, g : S' \longrightarrow \mathbb{C}$, $f(z) = \overline{z}$, $g(z) = \frac{1}{2}$
 $H(z, t) = (1-t)z + \frac{t}{2}$

Null homotopic

A map $C: X \longrightarrow Y$ with $C(X)=Y_0$ $\forall x \in X$ is called a constant map (onto $Y_0 \in Y$)

If $f: X \longrightarrow Y$ satisfies $f \cong C$ then

f is null homotopic or homotopically trivial.

Fact. Any map $f: X \longrightarrow \mathbb{R}^n$, $n \ge 1$, is null homotopic.

 $H: X \times [0,1] \longrightarrow \mathbb{R}^n$, H(x,t) = (1-t)f(x)

Straight line joining y to y.

Ou. Can we replace the straight

lines by other continuous paths?

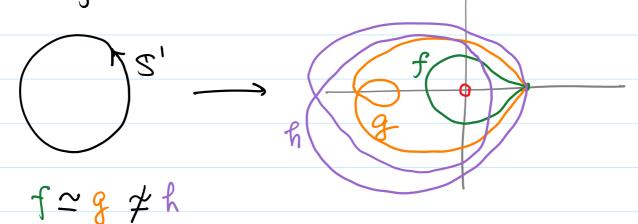
notes Page 2

Punctured plane

Friday, April 15, 2016 2:52 PM

Example. Consider the following three maps $f, g, h: S' \longrightarrow \mathbb{R}^2 \setminus \{0,0\}$. Their

images are shown

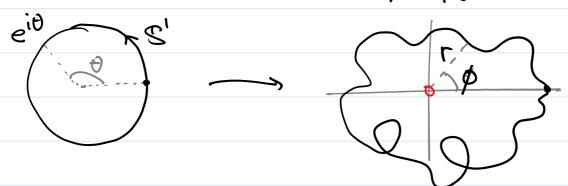


This can only be understood intuitively now.

Intuition

For any map $S' \longrightarrow \mathbb{R}^2 \setminus \{(0,0)\}^2$, it can be expressed as eight $\longrightarrow re^{i\phi}$ where

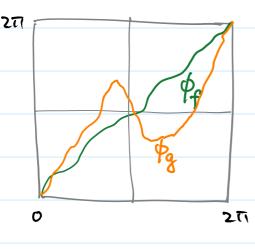
 $r = r(\theta) > 0$ and $\phi = \phi(\theta)$



We only need to worry about β because any two $r_1, r_2 > 0$ can be easily homotopic.

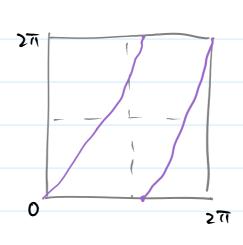
4:02 PM

Without loss of generality, assume $\phi(0)=0$. Then, when one varies θ in the domain S', $\phi=\phi(\theta)$ changes dependantly continuously. For the example of f and g, the graphs of ϕ are drawn below



Note that the two "ends" at (0,0) and (21,211) actually correspond to the same point on the loops of f and g.

In the above pictures, it is easy to continuously change by to by with the two end-points fixed. This gives a homotopy between f and g. However, the graph of h is different.



If we expect p_R goes from (0,0) to $(2\pi,2\pi)$, we can only have the discontinuous graph shown on the right hand side picture. To have a Continuous p_R , the graph goes from (0,0) to $(2\pi,4\pi)$.

One cannot at the same time fixed the end-points and continuously change to any of \$p\$ or \$g\$.

Winding number In any cases, for the pictures of f, g, h, we can define winding numbers, which is an invariant. $w(f) = w(g) = \frac{2\pi}{2\pi} = 1 \text{ and}$ $w(h) = \frac{4\pi}{2\pi} = 2$

As
$$w(f) = w(g) \neq w(h)$$
,
 $f, g \neq h$